Poster Program

Session 1 Bio-resource and Genomics

P-01 Bioresource project for legume plant research in Japan

*Masatsugu Hashiguchi¹, Shusei Sato², Takuyu Hashiguchi¹, Hidenori Tanaka¹ and Ryo Akashi¹ ¹Faculty of Agriculture, University of Miyazaki, ²Graduate School of Life Sciences, Tohoku University

P-02 *Bradyrhizobium* from sorghum roots suggests T3SS/T4SS/T6SS diversity and symbiosis island exchange in non-diazotrophic and rhizobial members of *B. ottawaense*

*Sawa Hara¹, Shintaro Hara¹, Takashi Morikawa¹, Masayuki Sugawara¹, Junichi Yoneda² Tsuyoshi Tokunaga², and Kiwamu Minamisawa¹ ¹Tohoku Univ., ²Earthnote Co., Ltd.

P-03 Experimental genome deletion via insertion sequences on bradyrhizobial symbiosis island by *sacB* system

*Haruka Arashida, Haruka Odake, Masayuki Sugawara, Hisayuki Mitsui and Kiwamu Minamisawa Tohoku univ.

P-04 Web interface of arbuscular mycorrhizal fungal and bacterial classification pipeline

*Hideki Hirakawa¹, Rieko Niwa², Shusei Sato³, Tatsuhiro Ezawa⁴ ¹Kazusa DNA Res. Inst., ²Inst. for Horticultural Plant Breeding, ³Tohoku Univ., ⁴Hokkaido Univ.

Session 2 Plant-Microbe interaction

P-05 Trapping native arbuscular mycorrhizal fungi by young thalli of liverwort *Marchantia paleacea*

Yoshihiro Kobae^{1,2}, Ryo Ohtomo², Sho Morimoto², *Daiki Sato¹, Tomomi Nakagawa³, Norikuni Oka², Shusei Sato⁴

¹Rakuno Gakuen Univ., ²NARO, ³NIBB, ⁴Tohoku Univ.

P-06 Role of type IV secretion system (T4SS) in Bradyrhizobium-legume symbiosis

*Kamonluck Teamtisong², Praneet Wangthaisonga¹, Pongdet Piromyoua¹, Pongpan Songwattanaa¹, Panlada Tittabutra¹, Nantakorn Boonkerda¹ and Neung Teaumroonga¹ ¹School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, ²The Center for Scientific and Technological Equipment (CSTE), Suranaree University of Technology

P-07 *Bacillus velezensis* S141 facilitates the development of nodules in soybean with *Bradyrhizobium diazoefficiens* USDA110

*Takahiko Kondo¹, Surachat Sibponkrung², Panlada Tittabutr², Nantakorn Boonkerd², Neung Teaumroong², Ken-ichi Yoshida¹ ¹Kobe Univ., ²Suranaree Univ. Tech.

P-08 Genetics analysis of *Bacillus velezensis* S141 on increasing N₂ fixation efficiency of soybean-Bradyrhizobium symbiosis

Surachat Sibponkrung¹, Kondo Takahiko², Kousei Tanaka³, Panlada Tittabutr¹, * Nantakorn Boonkerd¹, Ken-ichi Yoshida², and Neung Teaumroong¹

¹School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, ²Graduate School of Science, Technology and Innovation, Kobe University, ³Organization of Advanced Science and Technology, Kobe University

P-09 Mechanism of rice endophytic bradyrhizobial cell differentiation and its role on nitrogen fixation

*Teerana Greetatorn¹, Shun Hashimoto², Panlada Tittabutr¹, Toshiki Uchiumi² and Neung Teaumroong¹ ¹School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, ²Graduate School of Science and Engineering, Kagoshima University

P-10 Rice (*Oryza sativa* L.) Plant Growth Enhanced by Co-inoculation with Heterotrophic Protists and *Azospirillum* sp. strain B510

*Keiko Shiroishi^a, Kazuki Suzuki^b, Oguz Can Turgay^c, Jun Murase^d, Naoki Harada^e, Rasit Asiloglu^f ^aGraduate School of Science and Technology, Niigata University, ^bCenter for Transdisciplinary Research, Institute for Research Promotion, Niigata University, ^cFaculty of Agriculture, Ankara University, ^dGraduate School of Bioagricultural Sciences, Nagoya University, ^eInstitute of Science and Technology, Niigata University, ^fFaculty of Agriculture, Niigata University

P-11 Biofilm formation in the root-associative nitrogen-fixing bacterium *Pseudomonas* stutzeri A1501

*Min Lin, Liguo Shang, Yuhua Zhan and Yongliang Yan Biotechnology Research Institute, Chinese Academy of Agricultural Sciences

P-12 Analysis of the effects of sathopine on the soil bacterial communities and isolation of santhopine degrading bacteria

*Tomohisa Shimasaki¹, Takashi Kawasaki¹, Yuichi Aoki², Kazufumi Yazaki¹, Akifumi Sugiyama¹ ¹RISH, Kyoto Univ., ²Tohoku Medical Megabank Organization.,Tohoku Univ.

P-13 A comparative analysis for the rhizosphere microbiome of higher plants

*Yuichi Aoki, Shinichi Yamazaki ToMMo, Tohoku Univ.

Session 3 Nitrogen Fixation and Nitrogen Cycles

P-14 Structural comparative study of nitrogenase and DPOR and LPOR implicating a scope of designing new nitrogenase (LUN)

Qi Cheng

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences; C4-101, Nitrogen Fixation Laboratory, Qi Institute

P-15 Regulation of nitrogenase expression in the heterocystous cyanobacterium Anabaena sp. strain PCC 7120

Youhei Kurio¹, Yousuke Koike¹, Yu Kanesaki², *Shigeki Ehira¹ ¹Tokyo Metropolitan University, ²Shizuoka University

P-16 Biochemical characterization of CnfR, master transcriptional activator of genes for nitrogen fixation, in the cyanobacterium Leptolyngbya boryana, for X-ray crystallography

*Kei Wada¹, Noriko Kaseda¹, Noriko Kamimura¹, Yumiko Motoyama¹, Haruna Takao¹, Kazuki Hashimoto², Rie Mishima³, Ryoma Tsujimoto², Haruki Yamamoto^{2,3}, Yuichi Fujita^{2,3}

¹Department of Medical Sciences, University of Miyazaki, ²Graduate School of Bioagricultural Sciences, Nagoya University, ³School of Agricultural Sciences, Nagoya University

P-17	Functional evaluation of nitrogenase accessory proteins under diazotrophic condition in the nonheterocystous cyanobacterium <i>Leptolyngbya boryana</i>
	Aoi Nonaka ¹ , *Haruki Yamamoto ^{1,2} , Narumi Kamiya ¹ , Hiroya Kotani ² , Hisanori Yamakawa ² , Ryoma Tsujimoto ² , and Yuichi Fujita ^{1,2}
	¹ School of Agricultural Sciences, Nagoya University, Japan, ² Graduate School of Bioagricultural Sciences, Nagoya University
P-18	Contributions of extracellular polysaccharides to nitrogen fixation in <i>Burkholderia</i> vietnamiensis
	*Rina Shinjo, Aiko Tanaka, Daisuke Sugiura, Motohiko Kondo Graduate School of Bioagricultural Sciences, Nagoya Univ.
P-19	Vesicle differentiation mutant of the nitrogen-fixing actinobacterium <i>Frankia</i> casuarinae CcI3
	*Koya Asukai ¹ , Shintaro Matsuyama ¹ , Masaki Nakajo ² , Louis S. Tisa ³ , and Ken-ichi Kucho ¹ ¹ Grad. Schl. of Sci. Eng., Kagoshima Univ., ² Facl. of Sci., Kagoshima Univ., ³ Univ. New Hampshire
P-20	Can nitrogen fixing activity in rice stem be enhanced by high sugar concentration and low nitrogen fertilizer?
	*Takanori Okamoto ^{1,2} , Rina Shinjo ¹ , Aiko Tanaka ¹ , Daisuke Sugiura ¹ , Michelle Anne Bunquin ² , Olivyn Angeles ² , Pauline Chivenge ² , and Motohiko Kondo ¹
	'Graduate School of Bioagricultural Sciences, Nagoya Univ., 'Sustainable Impact Platform, International Rice Research Institute
P-21	Effect of nitrate application on hydrogen absorption of soybean rood nodules *Ohtake Norikuni ¹ , Nishikata Takumi ¹ , Takeda Soushi ¹ , Sueyoshi Kuni ¹ , and Ohyama Takuji ² ¹ Niigata Univ., ² Tokyo Univ. of Agrie.
P-22	Identification of mycorrhizal fungi common to the endangered species <i>Vaccinium</i> sieboldii and Pinus densiflora
	*Akiyoshi Tominaga ¹ , Sota Yamazaki ¹ , Yuna Uchiyama ¹ , Masaki Yahata ¹ , Yuuki Kobayashi ² and Masayoshi Kawaguchi ² ¹ Shizuoka Univ., ² National Institute for Basic Biology
Session 4	Legume and Rhizobia Symbiosis
P-23	Bel2-5, a type III effector of <i>Bradyrhizobium elkanii</i> hijacking soybean nodulation signaling
	*Safirah Tasa Nerves Ratu, Hien P. Nguyen, Michiko Yasuda, Shin Okazaki United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
P-24	NO scavenging activities of plant hemoglobin contributes to waterlogging tolerance of root nodule symbiosis
	*Mitsutaka Fukudome ¹ , Eri Watanabe ¹ , Nahoko Uchi ¹ , Ken-ichi Osuki ¹ , Ryujiro Imaizumi ² , Toshio Aoki ² , Toshiki Uchiumi ¹
	Graduate Senoor of Science and Engineering, Kagosinina University, Department of Appried Biological Science. Ninon University
P-25	Transcriptomic and phenotypic alteration of the shoot by the long-distance signals controlling nodule number
	*Nao Okuma ^{1,2} , Takashi Soyano ^{1,2} , Masayoshi Kawaguchi ^{1,2}

¹National Institute for Basic Biology, ²SOKENDAI

P-26 Investigation of genomic diversity and nitrogen fixation capability in indigenous Bradyrhizobium diazoefficiens strains

*Manabu Itakura¹, Kosuke Mitsuya², Takakazu Kaneko¹, Kiwamu Minamisawa² ¹Kyoto Sangyo Univ., ²Tohoku Univ.

P-27 Investigation of tissue-to-tissue communication focusing on the auxin in *Lotus* japonicus root nodule symbiosis

*Takashi Goto^{1,2}, Takashi Soyano^{1,2}, Meng Liu^{1,2}, Takuya Suzaki³, Masayoshi Kawaguchi^{1,2} ¹National Institute for Basic Biology, ²SOKENDAI, ³Tsukuba Univ.

P-28 Multiphase characterization of Vigna riukiuensis-associated root nodule bacteria from Ishigaki and Iriomote islands of the Okinawa archipelago

*Md Firoz Mortuza^{1,6}, Norihiko Tomooka², Tetsuya Akatsu^{3,4}, Ken Naito², Safiullah Habibi^{3,5}, Salem Djedidi⁶, Naoko Ohkama-Ohtsu⁷, & Tadashi Yokoyama⁷

¹Institute of Food and Radiation Biology, Bangladesh Atomic Energy Commission, Dhaka, ²Biodiversity Research Unit, Genetic Resources Center, National Institute of Agrobiological Sciences, ³Graduate School of Agriculture, Tokyo University of Agriculture and Technology, ⁴OAT Agrio Co., Ltd, ⁵Kabul University, Kabul, Afghanistan, ⁶Faculty of Agriculture, Tokyo University of Agriculture and Technology, ⁷Institute of Agriculture, Tokyo University of Agriculture and Technology

P-29 Dispersal of alpine legume-rhizobia symbiosis from the Arctic to Japanese alpine region

Shimpei Hasegawa¹, Tomohiro Kawai¹, Naoto Seo², Hajime Ikeda³, Shusei Sato⁴, Kazufumi Yazaki², *Kojiro Takanashi¹

¹Shinshu Univ., ²Kyoto Univ., ³Okayama Univ., ⁴Tohoku Univ.

P-30 Regulation of nodule development through factors involved in lateral root development in Lotus japonicus

*Takashi Soyano^{1,2}, Makoto Hayashi³, Masayoshi Kawaguchi^{1,2} ¹National Institute for Basic Biology, Department of Basic Biology in the School of Life Science, ²SOKENDAI, ³RIKEN

P-31 The RpoH-regulated gene sufT is involved in iron-sulfur protein metabolism and effective plant symbiosis in Sinorhizobium meliloti

*Hisayuki Mitsui, Kiwamu Minamisawa Grad Schl Life Sciences, Tohoku Univ

P-32 Exploring genetic diversity and signatures of horizontal gene transfer in nodule bacteria associated with Lotus japonicus in natural environments

*Masaru Bamba¹, Seishiro Aoki², Tadashi Kajita³, Hiroaki Setoguchi⁴, Yasuyuki Watano⁵, Shusei Sato⁶, and Takashi Tsuchimatsu⁵

¹Chiba Univ. Grad., ²Univ. Tokyo, ³Univ. Ryukyus, ⁴Kyoto Univ., ⁵Chiba Univ., ⁶Tohoku Univ.

P-33 Contribution of rhizobial *nifV* genes to symbiosis between two wide-host-range Bradyrhizobium strains and their various host plants

*Shun Hashimoto¹, Jenjira Wongdee², Pongpan Songwattana², Teerana Greetatorn², Kohki Goto¹, Panlada Tittabutr², Neung Teaumroong² and Toshiki Uchiumi¹ ¹Kagoshima Univ., ²Suranaree University of Technology

P-34 Analysis of cultivar difference for nodulation traits of soybeans in a field

*Yosuke Umehara¹, Yoshikazu Shimoda¹, Masaki Hayashi², Akito Kaga³, Fukuyo Tanaka², Yoshinari Ohwaki², Masao Ishimoto³, Makoto Hayashi⁴ ¹NIAS, ²CARC/NARO, ³NICS, ⁴CSRS/RIKEN

P-35 Deep placement of nitrogen fertilizers and nitrification inhibitor enhances the nitrogen fixation activity and promotes seed yield of soybean

*Takuji Ohyama^{1,5}, Yoshihiko Takahashi¹, Soshi Hatano¹, Norikuni Ohtake¹, Kuni Sueyoshi¹, Yoichi Fujita², Yoshifumi Nagumo², Takashi Sato³, Sayuri Tanabata⁴, Keisuke Ikebe⁵, Akihiro Saito⁵, Kyoko Higuchi⁵

¹Graduate School of Science and Technology, Niigata University, ²Niigata Agricultural Research Institute, Crop Research Center, ³Faculty of Bioresource Sciences, Akita Prefectural University, ⁴College of Agriculture, Ibaraki University, ⁵Faculty of Applied Biosciences, Tokyo University of Agriculture

P-36 Effect of inoculation with nitrogen-fixing bacterium *Pseudomonas stutzeri* A1501 on maize plant growth and the microbiome indigenous to the rhizosphere

*Jin Wang, Xiubin Ke, Yongliang Yan, Shuai Feng, Wei Lu, Wei Zhang, Ming Chen, Min Lin Biotechnology Research Institute, Chinese Academy of Agricultural Sciences

P-37 Yield, biomass production, and nutrient uptake in two forage rice genotypes in response to biochar and Bacillus pumilus strain TUAT-1

*Khin Thuzar Win¹, Yoshinari Ohwaki¹, Keiki Okazaki¹, Taiichiro Ookawa², Tadashi Yokoyama² ¹Central Region Agricultural Research Center, NARO, ²Tokyo University of Agriculture and Technology

P-38 A survey of plant growth-promoting bacteria derived from lateral roots of sugar beet based on a community analysis

*Kazuyuki Okazaki¹, Hirohito Tsurumaru², Megumi Hashimoto³, Hiroyuki Takahashi¹, Takuji Ohwada⁴, Kiwamu Minamisawa³, Seishi Ikeda¹

¹Hokkaido Agricultural Research Center, NARO, ²Kagoshima Univ., ³Tohoku Univ., ⁴Obihiro Univ. of Agriculture and Veterinary Medicine

P-39 Influence of Azolla incorporation and dual cropping on CH₄ and N₂O emission from a flooded paddy soil

*Samuel Munyaka Kimani¹, Putu Oki Bimantara², Keitaro Tawaraya², Shigeto Sudo³, and Weiguo Cheng^{1,2}

¹The United Graduate School of Agricultural Sciences, Iwate University, ²Faculty of Agriculture, Yamagata University, ³Institute for Agro-Environmental Sciences, NARO

P-40 Nitrogen mineralization of winter grasses, milk vetch and foxtail as green manure in paddy soil under long-term organic farming

*Valensi Kautsar¹, Weiguo Cheng², Keitaro Tawaraya², Kazunobu Toriyama³, Kazuhiko Kobayashi⁴ ¹The United Graduate School of Agricultural Sciences, Iwate University, ²Faculty of Agriculture, Yamagata University, ³Japan International Research Center for Agricultural Sciences, ⁴Graduate School of Agricultural and Life Sciences, The University of Tokyo

P-41 Incorporation of winter grasses suppressed summer weeds germination and increased inorganic nitrogen in flooding paddy soil

*Asih Indah Utami^{1,2}, Putu Oki Bimantara², Riho Umemoto³, Keitaro Tawaraya³, Weiguo Cheng³ ¹Faculty of Agriculture, Universitas Gadjah Mada; ²Graduate School of Agriculture Sciences, ³Faculty of Agriculture, Yamagata University

P-42 Studies on dynamic of C and N after land use change by lysimeter block experiment

*Putu Oki Bimantara¹, Yuka Sekikawa², Shouhei Itotani², Ren Torita², Toan Sy-Nguyen^{3,4}, Keitaro Tawaraya² and Weiguo Cheng²

¹Graduate School of Agriculture Sciences, Yamagata University; ²Faculty of Agriculture, Yamagata University; ³The United Graduate School of Agricultural Sciences, Iwate University; ⁴Faculty of Food Technology and Biotechnology, Dong A University

P-43 Wood-rotting *Basidiomycetes* fungi and *Aspergillus*-derived biological amendments differently influenced radiocesium transfer to rice plants

*Salem Djedidi, Marcela Caetano Lopes, Davilla Alessandra Da Silva Alves, Makoto Yoshida, Yohei Yamagata, Takuya Ban, Taiichiro Ookawa, Naoko Ohkama-Ohtsu, Tadashi Yokoyama Tokyo University of Agriculture and Technology

P-44 Effectiveness of AM fungal inoculation on Welsh onion in farmers' fields

Takae Suzuki¹, Rieko Niwa^{2,3}, Toru Uno¹, Ryosuke Tajima¹, Toyoaki Ito^{1,7}, Shusei Sato¹, Hideki Hirakawa⁴, Shigenobu Yoshida², Tatsuhiro Ezawa⁵, *Masanori Saito^{1,6} ¹Tohoku Univ., ²Central Region ARC, NARO, ³Inst. Hort. Plant Breed., ⁴Kazusa DNA Res. Inst., ⁵Hokkaido Univ., ⁶JST, ⁷ (Present) Niigata Agro-Food Univ.

P-45 Validation of biofertilizer effect on the monster rice which is a new forage rice under different fertilization or planting density conditions in Fukushima

*Shin-ichiro Agake¹, Katsuhiro Kojima², Yoshinari Ohwaki³, Taiichiro Ookawa⁴, Ohkama-Ohtsu Naoko⁴, Tadashi Yokoyama⁴

¹United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, ²ASAHI INDUSTRIES CO., LTD., ³NARO Agricultural Research Center, ⁴Institute of Agriculture, Tokyo University of Agriculture and Technology

P-46 Boosting nitrogen fixation of iron-reducing bacteria in paddy soil by Fe(iii) and rice straw application

*Takanori Ishida¹, Yoko Masuda¹, Yutaka Shiratori², Hideomi Itoh³, Keishi Senoo¹ ¹The University of Tokyo., ²Niigata agricultural research inst., ³AIST, Hokkaido Centre.

P-47 Dissecting the environmental factors shaping the community structure of arbuscular mycorrhizal fungi in agricultural field across Japan

*Rieko Niwa¹, Shusei Sato², Hideki Hirakawa³, Shigenobu Yoshida⁴, Takashi Sato⁵, Takae Suzuki², Masanori Saito², Takumi Sato⁶, Keitaro Tawaraya⁶, Ayako Fukunaga⁷, Yoshihiro Kobae⁸, Ryo Ohtomo⁸, Masaki Hayashi⁴, Toshihiko Karasawa⁴, Takuya Koyama⁹, Katsuki Adachi⁹, Yusaku Sugimura¹⁰, Ai Kawahara¹¹, Hayato Mruyama¹⁰ and Tatsuhiro Ezawa¹⁰

¹Institute for Horticultural Plant Breeding, ²Tohoku University, ³Kazusa DNA Research Institute, ⁴Central Region Agricultural Research Center, NARO, ⁵Akita Prefectural University, ⁶Yamagata University, ⁷Western Region Agricultural Research Center, NARO, ⁸Hokkaido Agricultural Research Center, NARO, ⁹Kyushu Okinawa Agricultural Research Center, NARO, ¹⁰Hokkaido University, ¹¹Sumitomo Chemical Co., Ltd.

P-48 Nitrogen dynamics in organic rice farming paddies with different soil profiles after the lands were reconstructed

*Riza Kurnia Sabri^{1,2}, Valensi Kautsar³, Keitaro Tawaraya², Weiguo Cheng² ¹Faculty of Agriculture, Universitas Gadjah Mada, ²Faculty of Agriculture, Yamagata University, ³The United Graduate School of Agricultural Sciences, Iwate University

P-49 The effect of biochar application on soil bacterial diversity and arbuscular mycorrhizal fungal in rhizosphere of maize (*Zea mays*)

*Bahar Sevilir¹, Kazuki Suzuki², Eiko Bizen³, Yusuf Osman Donar⁴, Ali Sınağ⁴,Oguz Can Turgay¹, Naoki Harada⁵

¹Ankara University, Faculty of Agriculture, Department of Soil Science and Plant Nutrition, ²Institute for Research Promotion, Niigata University, ³Graduate School of Science and Technology, Niigata University, ⁴Ankara University, Faculty of Science, Department of Chemistry, ⁵Institute of Science and Technology, Niigata University

P-50 Community analysis of sweet potato-associated bacteria for surveying beneficial diazotrophs as a candidate of biofertilizer

*Seishi Ikeda¹, Yuki Kobayashi², Hirohito Tsurumaru³, Kazuyuki Okazaki¹, Masayuki Hirafuji⁴, and Akira Kobayasi²

¹Hokkaido Agricultural Research Center, NARO, ²Kyushu Okinawa Agricultural Research Center, ³Faculty of Agriculture, Kagoshima University, ⁴Graduate School of Agricultural and Life Sciences, The University of Tokyo

P-51 Synergistic effect of *Mitsuaria* sp. TWR114 and *Ralstonia* sp. TCR112 on enhanced biocontrol of tomato bacterial wilt

*Malek Marian¹, Akio Morita², Hiroyuki Koyama¹, Haruhisa Suga³, Masafumi Shimizu¹ ¹Faculty of Applied Biological Sciences, Gifu University; ²Faculty of Agriculture, Shizuoka University; ³Life Science Research Center, Gifu University

P-52 Effectiveness of nitrogen-fixing bacteria, *Klebsiell apneumoniae* HKN1 and phosphate-solubilizing bacteria, *Pantoea agglomerans* HP2 on the growth and the yield of OM5451 rice cultivar in the greenhouse and the field at Vung Liem district, Vinh Long province

*Nguyen Huu Hiep and Vo thi Thu Tuyen Biotechnology Research and Development Institute, Cantho University

P-53 Organelle dynamics and intercommunication during plant-microbe interaction

Eunsook Park^{1,2}, Joo Hyun Lee^{1,2}, Soeui Lee^{1,2}, Sejun Kim^{1,2}, Seungmee Jung^{1,2}, Jongchan Woo^{1,2}, Savithrama P. Dinesh-Kumar³, *Doil Choi^{1,2} ¹Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, ²Plant Immunity Research

¹Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, ¹Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, ³Department of Plant Biology, University of California

P-54 Identification of 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase producing endophytic bacteria from local agricultural plantation based on 16S ribosomal RNA gene as genetic marker

*Rumella Simarmata¹, Ngadiman², Muhammad Saifur Rohman², Partomuan Simanjuntak^{1,3}, Harmastini Sukiman¹

¹Research Center of Biotechnology, Indonesian Institute of Science, ²Gadjah Mada University, ³Pancasila University

P-55 Regulation of *Paenibacillus durus* ATCC 35681 *nifB1* and *nifH1* genes

*Mardani Abdul Halim¹, Choo Quok-Cheong², Nazalan Najimudin¹ ¹School of Biological Sciences, Universiti Sains Malaysia, ²Department of Biological Sciences, Universiti Tunku Abdul Rahman, Jalan Universiti Bandar Barat

P-56 Site-directed mutagenesis of ParA protein in *Azorhizobium caulinodans* ORS571: effect on cell cycle progression and stem-nodule development

*Yu-Sheng Wang^{1,2}, Kung-Ta Lee¹, Chi-Te Liu² ¹Departments of Biochemical Science and Technology, National Taiwan University, ²Institute of Biotechnology, National Taiwan University

P-57 Some bradyrhizobial strains are deleterious for a certain soybean cultivar

*Junichi Ikeda

Central Region Agricultural Research Center, NARO